NMR Structure of Temporin-1 Ta in Lipopolysaccharide Micelles: Mechanistic Insight into Inactivation by Outer Membrane
نویسندگان
چکیده
BACKGROUND Antimicrobial peptides (AMPs) play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS). The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide) in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD) NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a broader spectrum of activity.
منابع مشابه
Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy.
Essential understanding: Elucidation of structural requirements and interactions of antimicrobial peptides with lipopolysaccharide (LPS) are essential to understand the mechanism of action of antimicrobial peptides. The highly active antimicrobial peptide MSI-594 (see figure for electrostatic potential surface) acquires a novel helical hairpin structure in complex with LPS. The structure and in...
متن کاملNew insight into the application of outer membrane vesicles of Gram-negative bacteria
This review presents a brief outline of our current knowledge of the structure and chemical composition of the outer membrane vesicles (OMVs), originating from the surface of Gram negative bacteria including their outer membrane proteins and lipopolysaccharides. Moreover, the functional roles and applications of OMVs in medical research such as OMV-based vaccines, OMV adjuvants properties, OMV ...
متن کاملMembrane protein structure and dynamics from NMR spectroscopy.
We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, in...
متن کاملSarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor OprI in Pseudomonas aeruginosa
The emergence of antibiotic-resistant microbial strains has become a public health issue and there is an urgent need to develop new anti-infective molecules. Although natural antimicrobial peptides (AMPs) can exert bactericidal activities, they have not shown clinical efficacy. The limitations of native peptides may be overcome with rational design and synthesis. Here, we provide evidence that ...
متن کاملCysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity.
BACKGROUND Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid β-hairpin like structure that is stabilized by two disulfide bridges between Cys6-Cys15 and Cys8-Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of P...
متن کامل